direct product, p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C22×C8.C22, C8.1C24, C4.6C25, Q16⋊3C23, D4.3C24, Q8.3C24, SD16⋊2C23, C24.186D4, M4(2)⋊5C23, (C2×Q8)⋊21C23, (Q8×C23)⋊14C2, C4.32(C22×D4), C2.41(D4×C23), (C2×C8).297C23, (C2×C4).612C24, (C2×Q16)⋊58C22, (C22×Q16)⋊22C2, (C22×SD16)⋊9C2, C4○D4.33C23, C23.711(C2×D4), (C22×C4).537D4, (C2×SD16)⋊60C22, (C2×D4).491C23, (C22×M4(2))⋊7C2, (C22×Q8)⋊69C22, C22.53(C22×D4), (C2×M4(2))⋊57C22, (C22×C8).297C22, (C23×C4).623C22, (C22×C4).1223C23, (C22×D4).604C22, (C2×C4).668(C2×D4), (C22×C4○D4).29C2, (C2×C4○D4).336C22, SmallGroup(128,2311)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×C8.C22
G = < a,b,c,d,e | a2=b2=c8=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, ede=c4d >
Subgroups: 1068 in 732 conjugacy classes, 436 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C22×C8, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C22×M4(2), C22×SD16, C22×Q16, C2×C8.C22, Q8×C23, C22×C4○D4, C22×C8.C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C8.C22, C22×D4, C25, C2×C8.C22, D4×C23, C22×C8.C22
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)(17 64)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 54)(10 55)(11 56)(12 49)(13 50)(14 51)(15 52)(16 53)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 41)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 33)(2 36)(3 39)(4 34)(5 37)(6 40)(7 35)(8 38)(9 56)(10 51)(11 54)(12 49)(13 52)(14 55)(15 50)(16 53)(17 44)(18 47)(19 42)(20 45)(21 48)(22 43)(23 46)(24 41)(25 59)(26 62)(27 57)(28 60)(29 63)(30 58)(31 61)(32 64)
(1 57)(2 62)(3 59)(4 64)(5 61)(6 58)(7 63)(8 60)(9 19)(10 24)(11 21)(12 18)(13 23)(14 20)(15 17)(16 22)(25 35)(26 40)(27 37)(28 34)(29 39)(30 36)(31 33)(32 38)(41 55)(42 52)(43 49)(44 54)(45 51)(46 56)(47 53)(48 50)
G:=sub<Sym(64)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,64)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,54)(10,55)(11,56)(12,49)(13,50)(14,51)(15,52)(16,53)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,41)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,33)(2,36)(3,39)(4,34)(5,37)(6,40)(7,35)(8,38)(9,56)(10,51)(11,54)(12,49)(13,52)(14,55)(15,50)(16,53)(17,44)(18,47)(19,42)(20,45)(21,48)(22,43)(23,46)(24,41)(25,59)(26,62)(27,57)(28,60)(29,63)(30,58)(31,61)(32,64), (1,57)(2,62)(3,59)(4,64)(5,61)(6,58)(7,63)(8,60)(9,19)(10,24)(11,21)(12,18)(13,23)(14,20)(15,17)(16,22)(25,35)(26,40)(27,37)(28,34)(29,39)(30,36)(31,33)(32,38)(41,55)(42,52)(43,49)(44,54)(45,51)(46,56)(47,53)(48,50)>;
G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,64)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,54)(10,55)(11,56)(12,49)(13,50)(14,51)(15,52)(16,53)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,41)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,33)(2,36)(3,39)(4,34)(5,37)(6,40)(7,35)(8,38)(9,56)(10,51)(11,54)(12,49)(13,52)(14,55)(15,50)(16,53)(17,44)(18,47)(19,42)(20,45)(21,48)(22,43)(23,46)(24,41)(25,59)(26,62)(27,57)(28,60)(29,63)(30,58)(31,61)(32,64), (1,57)(2,62)(3,59)(4,64)(5,61)(6,58)(7,63)(8,60)(9,19)(10,24)(11,21)(12,18)(13,23)(14,20)(15,17)(16,22)(25,35)(26,40)(27,37)(28,34)(29,39)(30,36)(31,33)(32,38)(41,55)(42,52)(43,49)(44,54)(45,51)(46,56)(47,53)(48,50) );
G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11),(17,64),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,54),(10,55),(11,56),(12,49),(13,50),(14,51),(15,52),(16,53),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,41),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,33),(2,36),(3,39),(4,34),(5,37),(6,40),(7,35),(8,38),(9,56),(10,51),(11,54),(12,49),(13,52),(14,55),(15,50),(16,53),(17,44),(18,47),(19,42),(20,45),(21,48),(22,43),(23,46),(24,41),(25,59),(26,62),(27,57),(28,60),(29,63),(30,58),(31,61),(32,64)], [(1,57),(2,62),(3,59),(4,64),(5,61),(6,58),(7,63),(8,60),(9,19),(10,24),(11,21),(12,18),(13,23),(14,20),(15,17),(16,22),(25,35),(26,40),(27,37),(28,34),(29,39),(30,36),(31,33),(32,38),(41,55),(42,52),(43,49),(44,54),(45,51),(46,56),(47,53),(48,50)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4T | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C8.C22 |
kernel | C22×C8.C22 | C22×M4(2) | C22×SD16 | C22×Q16 | C2×C8.C22 | Q8×C23 | C22×C4○D4 | C22×C4 | C24 | C22 |
# reps | 1 | 1 | 2 | 2 | 24 | 1 | 1 | 7 | 1 | 4 |
Matrix representation of C22×C8.C22 ►in GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 13 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 13 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 13 | 4 | 0 | 4 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 16 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,16,0,0,0,0,0,0,2,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,0,0,13,13,0,0,0,0,0,13,0,4,0,0,0,0,4,0,0,0,0,0,0,0,13,13,4,4],[16,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,1,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,15,0,1] >;
C22×C8.C22 in GAP, Magma, Sage, TeX
C_2^2\times C_8.C_2^2
% in TeX
G:=Group("C2^2xC8.C2^2");
// GroupNames label
G:=SmallGroup(128,2311);
// by ID
G=gap.SmallGroup(128,2311);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,-2,477,456,1430,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^8=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,e*d*e=c^4*d>;
// generators/relations